2025年USACO公开赛金奖组问题一—Moo Decomposition

You have a long string S of Ms and Os and an integer K≥1. Count the number of ways of ways to decompose S into subsequences such that each subsequence is MOOOO....O with exactly K Os, modulo 109+7.

Since the string is very long, you are not given it explicitly. Instead, you are given an integer L (1≤L≤1018), and a string T of length N (1≤N≤106). The string S is the concatenation of L copies of the string T.

INPUT FORMAT (input arrives from the terminal / stdin):

The first line contains K, N, and L.
The second line contains the string T of length N. Every character is either an M or an O.

It is guaranteed that the number of decompositions of S is nonzero.

OUTPUT FORMAT (print output to the terminal / stdout):

Output the number of decompositions of string S, modulo 109+7.

SAMPLE INPUT:

2 6 1
MOOMOO

SAMPLE OUTPUT:

1

The only way to decompose S into MOOs is to let the first three characters form a MOO and the last three characters form another MOO.

SAMPLE INPUT:

2 6 1
MMOOOO

SAMPLE OUTPUT:

6

There are six distinct ways to decompose the string into subsequences (uppercase letters form one MOO, lowercase letters form another):

MmOOoo
MmOoOo
MmOooO
MmoOOo
MmoOoO
MmooOO

SAMPLE INPUT:

1 4 2
MMOO

SAMPLE OUTPUT:

4

SAMPLE INPUT:

1 4 100
MMOO

SAMPLE OUTPUT:

976371285

Make sure to take the answer modulo 109+7.

SCORING:

Inputs 5-7: K=1, L=1
Inputs 8-10: K=2, N≤1000, L=1
Inputs 11-13: K=1
Inputs 14-19: L=1
Inputs 20-25: No additional constraints.

Problem credits: Dhruv Rohatgi

扫码领取USACO试题答案+详细解析

咨询一对一备赛规划

2025年USACO公开赛白金奖组问题三—Package Pickup

**Note: The time limit for this problem is 4s, 2x the default.**

Farmer John has distributed cows and packages in a weird pattern across the number line using the following process:

Farmer John chooses a number M (1≤M≤1018).
Farmer John chooses N (1≤N≤2⋅104) intervals [ Li,Ri] to distribute cows in (1≤LiRi≤1018). He then places cows at locations Li,Li+M,Li+2M,…,Ri. It is guaranteed that RiLi is a multiple of M.
Farmer John chooses P (1≤P≤2⋅104) intervals [Ai,Bi] to distribute packages in (1≤AiBi≤1018). He then places packages at locations Ai ,Ai +M,Ai +2M,…,Bi
. It is guaranteed that BiAi is a multiple of M.

Once the cows and packages are distributed, Farmer John wants to see how long it takes the cows to pick up the packages. Every second, Farmer John can issue a command to a single cow to move one unit left or right of their current position with his handy walkie talkie. If a cow travels to the position where a package is located, they are able to pick it up. Farmer John wants to know the minimum time in seconds that it would take the cows to pick up every package.

INPUT FORMAT (input arrives from the terminal / stdin):

The first line contains M, N, and P.

The next N lines each contain two integers Li and Ri.

The next P lines each contain two integers Ai and Bi.

OUTPUT FORMAT (print output to the terminal / stdout):

Output a single integer, representing the minimum amount of time it can take the cows to pick up all the packages, given that every second, he can issue a single left/right command to a single cow.

SAMPLE INPUT:

100 3 7
10 10
20 20
30 30
7 7
11 11
13 13
17 17
24 24
26 26
33 33

SAMPLE OUTPUT:

22

In the above test case, suppose the cows and packages are numbered from left to right. Farmer John can follow this procedure to pick up the packages in 22 seconds:

Issue 3 lefts to cow 1 so that it picks up package 1
Issue 3 rights to cow 3 so that it picks up package 7
Issue 4 rights to cow 2 so that it picks up package 5
Issue 10 rights to cow 1 so that it picks up packages 2, 3, and 4
Issue 2 rights to cow 2 so that it picks up package 6

SAMPLE INPUT:

2 1 1
1 5
2 6

SAMPLE OUTPUT:

3

There are three cows and three packages. Farmer John can issue one right to each cow.

SCORING:

Input 3-4: It is guaranteed that the total number of cows and packages does not exceed 2⋅105 
Inputs 5-10: It is guaranteed that N,P≤500.
Inputs 11-13: It is guaranteed that no intervals of packages or cows intersect.
Inputs 14-20: No additional constraints.

Problem credits: Suhas Nagar and Benjamin Qi

扫码领取USACO试题答案+详细解析

咨询一对一备赛规划

2025年USACO公开赛白金奖组问题二—Lazy Sort

Farmer John has N cows (2≤N≤5⋅106) and is attempting to get them to sort a non-negative integer array A of length N by relying on their laziness. He has a lot of heavy boxes so he lines the cows up one behind another, where cow i+1 is behind cow i, and gives ai boxes to cow i (0≤ai).

Cows are inherently lazy so they always look to pass their work off to someone else. From cow 1 to N−1 in order, each cow looks to the cow behind them. If cow i
has strictly more boxes than cow i+1, cow i thinks this is "unfair" and gives one of its boxes to cow i+1. This process repeats until every cow is satisfied.

Farmer John will then note the number of boxes bi that each cow i is holding and create an array B out of these values. If B=sorted(A), then Farmer John will be happy. Unfortunately, Farmer John forgot all but Q values (2≤Q≤min(N,100)) in A. Luckily, those values include the number of boxes he was going to give to the first and last cow. Each value that FJ remembers is given in the form ci vi representing that a ci=vi(1≤ci≤N, 1≤vi ≤109). Determine the number of different ways the missing values can be filled in so that he will be happy mod 109+7.

INPUT FORMAT (input arrives from the terminal / stdin):

The first line contains two space-separated integers N and Q representing the number of cows and queries respectively.

The next Q lines contain two space separated integers ci vi representing that cow ci initially holds vboxes. It is guaranteed that c1=1, cQ=N, and ci<ci+1
(the order of the cows is strictly increasing).

OUTPUT FORMAT (print output to the terminal / stdout):

Print the number of different ways modulo 109+7 that values ai can be assigned such that Farmer John will be happy after the cows perform the lazy sort. It is guaranteed that there will be at least one valid assignment.

SAMPLE INPUT:

3 2
1 3
3 2

SAMPLE OUTPUT:

2

In this example, FJ remembers the values at the ends of the array. The arrays [3,2,2] and [3,3,2] are the valid arrays that will make FJ happy at the end of the lazy sorting.

SAMPLE INPUT:

6 3
1 1
3 3
6 5

SAMPLE OUTPUT:

89

SCORING:

Inputs 3-4: N,vi≤100
Inputs 5-6: N≤100 and vi≤106
Inputs 7-9: N≤2⋅105 and vi≤106
Inputs 10-12: N≤2⋅105
Inputs 13-15: No additional constraints.

Problem credits: Suhas Nagar

扫码领取USACO试题答案+详细解析

咨询一对一备赛规划

2025 年美国USACO公开赛——最终结果

2025 年美国公开赛以算法编程问题为特色,涵盖广泛的技术和难度级别。

在 5782 天的比赛中,共有 4 名不同的用户登录了比赛。共有 4024 名参与者提交了至少一个解决方案,来自 100+ 个不同的国家/地区。2349 名参与者来自美国,其中来自中国、加拿大、韩国、罗马尼亚、印度和新加坡的参与人数也很高。

总共有 10638 篇评分的提交,按语言细分如下:

6698 C++17

1701 Python-3.6.9

1315 Java

866 C++11

41 C

17 Python-2.7.17

以下是白金、黄金、白银和铜奖比赛的详细结果。 您还可以找到每个问题的解决方案和测试数据。

USACO 2025 年 美国公开赛,白金奖

白金组共有 255 名参与者,其中 199 名是大学预科生。得分最高的成员的成绩在这里。祝贺所有最优秀的参赛者取得优异的成绩!

1 Forklift Certified
查看问题 | 测试数据 | 解决方案
2 Lazy Sort
查看问题 | 测试数据 | 解决方案
3 Package Pickup
查看问题 | 测试数据 | 解决方案

USACO 2025 年美国公开赛,金牌

黄金组共有 856 名参与者,其中 627 名是大学预科生。所有在本次比赛中获得 850 分或更高分的参赛者将自动晋升到白金组。获得晋升的美国大学预科生名单在这里

1 Moo Decomposition
查看问题 | 测试数据 | 解决方案
2 Election Queries
查看问题 | 测试数据 | 解决方案
3 OohMoo Milk
查看问题 | 测试数据 | 解决方案

USACO 2025 年美国公开赛,银牌

白银组共有 2000 名参与者,其中 1545 名是大学预科生。所有在本次比赛中获得 750 分或更高分的参赛者将自动晋级黄金组。

1 Sequence Construction
查看问题 | 测试数据 | 解决方案
2 Compatible Pairs
查看问题 | 测试数据 | 解决方案
3 Ski Slope
查看问题 | 测试数据 | 解决方案

USACO 2025 年美国公开赛,铜牌

铜牌组共有 2461 名参与者,其中 1883 名是大学预科生。所有在本次比赛中获得 700 分或更高分的参赛者将自动晋升到银牌组。

1 Hoof Paper Scissors Minus One
查看问题 | 测试数据 | 解决方案
2 More Cow Photos
查看问题 | 测试数据 | 解决方案
3 It's Mooin' Time III

查看问题 | 测试数据 | 解决方案

结语

2024-2025 赛季现已结束。我很高兴看到,尽管问题重重,但本赛季的所有比赛都进行得很顺利,并带来了大量的晋升。祝贺所有参与其中的人,他们的编码和解决问题的能力在整个赛季都有所提高。

对于那些尚未晋升的人,请记住,你练习得越多,你的算法编码技能就会越好——请坚持下去!USACO竞赛旨在挑战最优秀的学生,要想在他们职中脱颖而出,可能需要付出大量的努力。为了帮助您修复代码中的任何错误,您现在可以使用“分析模式”重新提交解决方案并从评判服务器获得反馈。

大量的人为USACO竞赛的质量和成功做出了贡献。本次竞赛的协助人员包括Suhas Nagar, Nathan Wang, Nick Wu, William Lin, Chongtian Ma, Alex Liang, Aakash Gokhale, Weiming Zhou, Ho Tin Fan, Michelle Wei, Jichao Qian, Brandon Wang, Dhruv Rohatgi, Thomas Liu, Haokai Ma, Larry Xing, Eric Yang, Austin Geng, Andi Qu, Benjamin Chen, Anand John, and Benjamin Qi。 也感谢我们的翻译帮助我们扩大比赛的范围。最后,我们非常感谢USACO赞助商的慷慨支持:Citadel, 它已成为我们营地和IOI/EGOI团队的独家赞助商,以及Jump Trading,它帮助赞助我们的在线比赛。

祝我们在 2025 年 IOI 和 EGOI 上好运,我们期待着 在 2025-2026 赛季再次见到大家!

祝您编码愉快!

2025年USACO公开赛白金奖组问题一—Forklift Certified

Farmer John is training to become forklift certified! As part of his training, he needs to clear N(1≤N≤105) boxes, conveniently labeled 1 through N, from an old warehouse.

The boxes can be modeled as axis-aligned rectangles in a 2-dimensional plane, where the +x-direction is east and the +y-direction is north. Box i has its southwest corner at (xi1,yi1) and its northeast corner at (xi2,yi2). All coordinates are integers in the range [1,2N], and no two corners from two different rectangles share the same x or y coordinate. All boxes have a non-zero area, and no two boxes intersect.

Farmer John plans to remove the boxes one at a time out of the southwest entrance of the warehouse. However, he can only remove a box if no part of any other box lies both south and west of the box's northeast corner due to physical limitations of the forklift.

An example with N=4 is shown below. To remove box 4, there cannot be any other boxes in the shaded region. Boxes 2 and 3 prevent box 4 from being removed, but box 1 does not.

Help Farmer John decide how to remove all the boxes! Your code should operate in two separate modes, defined by an integer flag M:

Mode 1 (M=1): Generate a permutation of 1,…,N specifying a valid box removal order. If there are multiple valid orders, find any. It can be proven that such an order always exists.
Mode 2 (M=2): For each k=1,…,N, output 1 if Farmer John can remove box k if boxes 1,…,k−1 have already been removed, and 0 otherwise.

INPUT FORMAT (input arrives from the terminal / stdin):

Each input consists of T (1≤T≤10) independent test cases. It is guaranteed that the sum of all N within each input does not exceed 5⋅105.

The first line of input contains T and M. (Note that M is the same for each test case.) Each test case is then formatted as follows:

The first line contains a single integer N.

Each of the next N lines contains four space-separated integers xi1,yi1, xi2,yi2 the locations of the southwest and northeast corners of box i.

OUTPUT FORMAT (print output to the terminal / stdout):

For each test case:

If M=1, output a single line with N space-separated integers, where the j-th integer is the label of the j-th box to remove.

If M=2, output a single line with a binary string of N characters specifying the answer for each k=1,…,N.

SAMPLE INPUT:

2 1
4
1 6 2 8
6 2 7 3
3 1 4 7
5 4 8 5
3
1 5 3 6
4 1 5 2
2 3 6 4

SAMPLE OUTPUT:

1 3 2 4
2 3 1

The first test case corresponds to the N=4 exammple above. Box 1 is not blocked by anything, box 3 is blocked by box 1, box 2 is blocked by box 3, and box 4 is blocked by boxes 2 and 3.

SAMPLE INPUT:

2 2
4
1 6 2 8
6 2 7 3
3 1 4 7
5 4 8 5
3
1 5 3 6
4 1 5 2
2 3 6 4

SAMPLE OUTPUT:

1011
011

For the first test case, box 2 is blocked by box 3, so Farmer John cannot remove it before removing box 3.

SCORING:

Inputs 3-5: M=1, N≤1000.
Input 6: M=2, N≤1000.
Inputs 7-13: M=1, no additional constraints.
Inputs 14-16: M=2, no additional constraints.

扫码领取USACO试题答案+详细解析

咨询一对一备赛规划

STEM申请王炸!USACO不同等级在大学申请中有什么优势?

作为一项全球知名的计算机竞赛,USACO的影响力无疑是显著的。许多美国名校,包括麻省理工学院(MIT)、斯坦福大学、哈佛大学等,都将USACO赛事视为了解申请者能力的重要标准。相较于传统的数学竞赛,参加USACO可以更为精准地证明申请者在计算机科学的实践能力,这为有志于在相关领域深造的学生提供了一个更具说服力的背景。

USACO(美国计算机奥林匹克竞赛)根据参赛者的表现分为多个等级,每个等级在大学申请中都有不同的作用和优势。

一、IOI金牌(国际信息学奥林匹克竞赛金牌)

作用:

顶尖名校的“敲门砖”: 获得IOI金牌意味着你在计算机科学领域达到了 世界顶尖水平,这几乎是 保证被MIT(麻省理工学院)、Stanford(斯坦福大学)、Harvard(哈佛大学) 等顶尖名校录取的 “金钥匙”。

全球认可: IOI是全球最具影响力的信息学竞赛,其金牌得主在学术界和工业界都备受瞩目。

申请优势:

几乎确保录取: 获得IOI金牌的学生在申请上述顶尖名校时,几乎可以 确保录取。

奖学金机会: 许多顶尖大学会为IOI金牌得主提供 全额奖学金 和 其他优厚待遇。

二、USACO国家集训队

作用:

顶尖大学申请的“助推器”: 进入USACO国家集训队在申请 MIT、Stanford、Princeton(普林斯顿大学) 等顶尖大学时具有 非常明显和有效的助推作用。

学术能力证明: 表明你在计算机科学和编程方面拥有 卓越的能力 和 潜力。

申请优势:

强有力的学术证明: 国家集训队成员的身份是 强有力的学术证明,可以 增强 申请材料的 竞争力。

面试机会: 一些顶尖大学可能会为USACO国家集训队成员提供 面试机会 或 优先考虑。

三、USACO Platinum Division(铂金级)

作用:

名校申请的“加分项”: 进入USACO铂金级在申请 CMU(卡内基梅隆大学)、Georgia Tech(佐治亚理工学院)、UC Berkeley(加州大学伯克利分校) 等名校时是 很大的加分项。

编程能力体现: 表明你具备 顶尖的编程能力 和 算法设计能力。

申请优势:

学术竞争力: 铂金级成绩可以 显著提升 申请者在 计算机科学 和 工程 等相关专业的 学术竞争力。

奖学金机会: 一些大学可能会为铂金级选手提供 奖学金 或 其他奖励。

四、USACO Gold Division(黄金级)

作用:

好学校申请的“亮点”: 进入USACO黄金级在申请 UC Berkeley、UCLA(加州大学洛杉矶分校)、GIT(佐治亚理工学院) 等好学校时是一个 亮点。

编程能力证明: 表明你具备 优秀的编程能力 和 问题解决能力。

申请优势:

竞争力提升: 黄金级成绩可以 提升 申请者在 顶尖大学 和 热门专业 中的 竞争力。

项目参与机会: 一些大学可能会邀请黄金级选手参与 研究项目 或 实习机会。

五、USACO Silver Division(银级)

作用:

申请亮点: 进入USACO银级在申请 许多大学 时是一个 亮点,可以展示你的 编程兴趣 和 学习能力。

基础能力证明: 表明你具备 良好的编程基础 和 逻辑思维能力。

申请优势:

差异化竞争力: 银级成绩可以帮助申请者在 众多申请者 中 脱颖而出。

课外活动证明: 银级成绩可以作为 课外活动 的一个 有力证明,展示你的 全面发展。

扫码咨询usaco学术活动辅导课程+免费领取历年真题&参考书

2024-2025赛季USACO竞赛3月公开赛各级别难度解析!如何建立科学备考体系?

USACO(美国计算机奥林匹克竞赛)2024-2025赛季正式落下帷幕。本年度赛事呈现明显难度梯度,3月公开赛作为赛季收官战,其题目复杂度较往届显著提升。

一、2024-2025赛季USACO赛事综述

从数据维度分析,铜级组别第三题首次引入多重算法嵌套设计,银级首次出现原属金级范畴的树形DP题型,金级压轴题则突破传统分治结构,转向数学建模与组合优化的深度结合。

二、各级别赛事难度深度解析

(一)铜级组别关键突破点

算法考察维度

基础算法模块保持模拟、贪心、二分查找三大核心,但实现方式呈现复合化趋势。3月公开赛第三题要求选手在单题中同步完成贪心策略构建与模拟场景建模,需建立二维坐标系进行空间关系推演。

数据结构应用

二维数组操作频次增加,字符串处理类题目占比提升。典型如字符序列特征提取题型,需通过滑动窗口机制优化时空复杂度。

思维训练重点

新增问题分解能力评估指标,要求选手在15分钟内完成多条件约束分析。

(二)银级组别能力跃迁路径

算法升级特征

动态规划类题目占比增加,其中树形DP首次作为独立考点出现。3月赛题第二题要求建立三层状态转移方程,显著高于往届同类型题目。

图论应用深化

最短路径算法出现拓扑排序变体题型,需同步处理节点权重与路径约束条件。

(三)金级组别高阶思维模型

数学工具进阶

概率期望题型占比增加,需建立马尔可夫链模型进行状态转移分析。3月压轴题要求同步处理组合数计算与离散概率分布,涉及容斥原理的逆向应用。

数据结构革新

可持久化数据结构题目出现,线段树题型普遍要求支持历史版本回溯。

问题建模范式

多源约束建模成为新趋势,需同步处理时空复杂度、资源分配、状态同步三大维度。成功解题方案普遍包含3-5个正交优化策略。

三、科学备考体系构建策略

(一)能力诊断与定位

建议参赛者通过官方月赛进行基准测试:

铜级达标线:3小时内完成3题且正确率≥80%

银级晋级标准:成功解出至少1道动态规划难题

金级竞争力指标:可在4小时内处理≥10^5量级数据

(二)阶梯式训练方案

铜级提升路径

建立50小时专项训练周期,重点突破:

复合贪心策略构建(15-20题)

二分查找边界条件处理(30+变式训练)

多维数组空间建模(3D坐标系应用)

银级突破要点

配置80小时强化训练,聚焦:

树形DP状态压缩(森林结构处理)

分层图最短路径优化(Dijkstra+优先队列)

动态规划滚动数组技巧(内存节省70%)

金级冲刺方法论

实施120小时特训计划,着重:

组合数学高阶应用(生成函数建模)

概率期望递推系统(马尔可夫链构建)

可持久化数据结构实现(版本树管理)

扫码咨询usaco学术活动辅导课程+免费领取历年真题&参考书

名校申请最强助攻!为什么推荐你参加USACO竞赛?

在当今快速发展的信息技术时代,计算机科学的学习和应用变得越来越重要。对于有志于在STEM(科学、技术、工程、数学)领域深造的高中生来说,参加一些具有权威性的计算机竞赛是提升自身背景,增强院校申请竞争力的重要途径之一。在这一领域,USACO无疑是最具认可度的赛事之一。

一、全球高人气的计算机竞赛

1.悠久历史与全球影响力:

超过30年历史: USACO自成立以来已有 超过30年 的历史,是全球最负盛名的编程竞赛之一。

广泛参与: 每年吸引来自 世界各地 的 大量学生选手 参与。

主要参赛国家: 主要集中在美国和中国,但也有来自其他国家和地区的选手。

2.STEM留学申请中的重要性:

竞争激烈: 在当今 竞争日益激烈、愈发“内卷” 的 STEM(科学、技术、工程、数学) 留学申请环境中,USACO已成为 国际生竞相追逐 的 热门赛事。

高含金量: USACO的成绩是 展示编程能力、逻辑思维 和 问题解决能力 的 有力证明,在申请顶尖大学时具有 重要参考价值。

3.中国参赛情况:

参赛人数众多: 仅在中国就有 数千名选手 报名参赛,竞争非常激烈。

二、出分超快的独有赛制

1.快速评分与放榜:

当场出成绩: USACO的评分速度非常快,参赛者可以 当场 知道自己的成绩。

一周内放榜: 比赛结果通常在 一周内 公布。

2.对申请者的优势:

临近申请DDL友好: 对于那些 临近申请截止日期(DDL) 的同学来说,USACO的快速出分机制非常友好,可以 快速拿到申请的“敲门砖”。

藤校录取机会: 如果能够获得 金奖 或 铂金奖,将大大增加 提前被藤校录取 的机会。

3.藤校对USACO的重视:

学术能力证明: USACO成绩是顶尖大学评估学生 学术能力 和 编程水平 的重要指标。

三、趣味升级的独特赛制

1.积分赛制:

段位划分: USACO采用 积分赛制,段位分为 青铜、白银、黄金、铂金 四个等级。

晋级机制: 参赛者从 青铜 开始,通过积累积分 逐步晋级。

2.赛制的优势:

趣味性: 这种赛制 趣味性 强,能够激发参赛者的 竞争意识 和 参与热情。

容错机会: 参赛者有 多次机会 参加比赛,积累经验并逐步提升自己的水平。

全面考核: 赛制设计更加 全面,能够全面考察参赛者的 编程能力、问题解决能力 和 持续学习能力。

四、低门槛高开放的国际赛事

1.低参赛门槛:

无硬性要求: USACO的参赛要求非常低,理论上没有任何门槛。

年龄不限: 无论是小学生、中学生还是大学生,只要 热爱编程,都可以 注册账户 参加。

2.鼓励尽早参与:

积累经验: 越早参与USACO,就能够 积累更多的经验,提升自己的编程能力和竞赛水平。

持续学习: USACO的赛制鼓励参赛者 持续学习 和 不断进步,为未来的学术和职业发展打下坚实基础。

扫码咨询usaco学术活动辅导课程+免费领取历年真题&参考书

USACO竞赛适合哪些人参加?这四类学生不要错过!

USACO引起了越来越多学生的关注,尤其是中国学生。最新数据显示,2024年中国学生在USACO中的占比已达到37%。USACO作为一项全球顶尖的编程竞赛,适合不同背景和目标的学生参加。

一、爬藤目标明确的学术派

特点:

学术成绩优异: GPA 3.8+ / AP数理科目全5分。

明确的专业目标: 计划申请 计算机科学(CS)、人工智能(AI)、数据科学 等相关专业。

课外活动短板: 可能缺乏其他有竞争力的课外活动。

学习目标:

冲击白金级: 争取在USACO竞赛中取得 白金级 奖项,以增强申请竞争力。

弥补课外活动短板: 通过USACO奖项展示 编程能力 和 学术潜力,弥补课外活动的不足。

建议:

系统学习: 制定详细的 学习计划,系统学习 算法、数据结构 等核心知识。

模拟训练: 定期进行 模拟比赛,提高 解题速度 和 准确性。

时间管理: 合理安排学习时间,平衡 学术课程 和 竞赛准备。

二、编程零基础的潜力股

特点:

年级较低: 7-9年级。

逻辑思维强: 拥有 奥数获奖 经历,逻辑思维能力突出。

学习意愿强: 愿意投入 大量时间 进行 系统学习。

学习路径:

从铜级开始: 从USACO的 铜级 比赛开始,逐步提升自己的编程水平和竞赛成绩。

循序渐进: 按照 青铜 → 白银 → 黄金 → 铂金 的顺序,稳步提升。

建议:

基础学习: 先学习 编程基础,例如 Python 或 C++ 语言。

算法入门: 学习 基础算法 和 数据结构,例如 排序算法、搜索算法、链表、树 等。

持续练习: 坚持 每日练习,并参加 在线编程平台(例如 LeetCode、Codeforces 等)的比赛。

三、信息学竞赛转轨生

特点:

已有竞赛经验: 已有 NOIP(全国青少年信息学奥林匹克联赛)或 CSP(中国计算机学会软件能力认证)参赛经历。

编程基础扎实: 掌握 C++ 基础,或者具备其他编程语言的基础。

优势:

竞赛经验: 具备 竞赛经验 和 解题技巧,能够更快适应USACO的竞赛节奏。

编程基础: 扎实的 编程基础 和 算法知识 为参加USACO提供了良好的起点。

建议:

熟悉USACO规则: 了解USACO的 比赛规则 和 评分标准,并分析历年 真题。

针对性训练: 针对USACO的 常见题型 和 高频考点 进行 针对性训练。

提升算法水平: 学习更 高级的算法 和 数据结构,例如 动态规划、图论算法 等。

四、国际学校的全才生

特点:

国际学校背景: 来自 IB 或 AP 体系。

多任务处理: 需要 平衡多门 SAT2 和 AP 考试。

时间有限: 课业负担重,时间安排紧张。

时间规划:

寒暑假集中突破:

算法学习: 利用 寒暑假 时间,集中学习 算法 和 数据结构。

模拟比赛: 参加 模拟比赛,提高 实战能力。

学期中碎片时间刷题:

每日练习: 利用 碎片时间 进行 每日练习,保持 编程手感。

在线平台: 利用 在线编程平台 进行 刷题,并参与 社区讨论。

建议:

制定计划: 制定 详细的学习计划,合理安排 学习时间 和 竞赛准备。

高效学习: 注重 学习效率,选择 高质量 的学习资料和 针对性 的练习题。

寻求帮助: 如果遇到困难,可以寻求 老师 或 同学 的帮助,或者参加 竞赛辅导班。

扫码咨询usaco学术活动辅导课程+免费领取历年真题&参考书

USACO银升金需要面临哪些挑战?USACO银升金备考攻略请查收!

USACO成立于1992年,旨在为美国代表队选拔参加每年夏季举办的国际信息学奥林匹克竞赛(IOI)而设立。与中国的NOIP(全国青少年信息学奥林匹克竞赛)相对应,USACO是美国国内选拔国际赛事选手的重要途径,对计算机、数学和工程等相关学科有着重要的背景提升作用。

USACO银升金需要面临哪些挑战?

1.知识体系升级

从银级到金级,不仅要求选手对基础算法有扎实的理解,还需要掌握更为复杂和高效的算法。这包括但不限于:

动态规划进阶:区间DP、树形DP、状态压缩DP等。

图论深度应用:网络流、二分图匹配、Tarjan强连通分量等。

高级数据结构:线段树、树状数组、并查集优化等。

这些知识点不仅要求理解其原理,还需要能够灵活运用到解决实际问题中。

2.题目复杂度飙升

金级题目通常具有较大的输入规模(如1e5~1e6),这意味着选手需要设计出时间复杂度为O(nlogn)甚至O(n)的高效算法来解决问题。暴力搜索方法在这种情况下几乎不可能通过所有测试用例,因此对算法效率的要求极高。此外,边界条件更加苛刻,代码容错率低,任何小错误都可能导致得0分。

3.竞争压力增加

随着参赛人数的增加,晋级分数线也在逐年上升。例如,在2024-2025赛季的1月比赛中,银升金组的晋级分数线达到了700分。高分竞争意味着选手不仅要正确解答题目,还需要在限定时间内尽可能多地得分。

USACO银升金备考攻略

为了成功晋级,考生可以从以下几个方面着手准备:

加强高级算法学习:深入学习贪心算法、动态规划(尤其是进阶内容)、图算法以及高级数据结构的应用。

实践真题练习:通过大量做题来熟悉不同类型的问题,并尝试不同的解法。特别注意总结那些你一开始没有想出来的题目,理解其背后的逻辑和技巧。

提高代码质量:编写简洁、清晰且高效的代码,减少因小错误导致的失分。同时,注重代码的可读性和调试能力。

模拟考试环境:定期进行模拟考试,适应比赛的时间限制和压力,提高解题速度和准确率。

加入社区交流:与其他参赛者交流经验,参与讨论,可以帮助你更快地发现自己的不足之处并加以改进。

通过系统的学习和充分的准备,可以有效提升自己在USACO竞赛中的表现,从而实现从银级到金级的跨越。

扫码咨询usaco学术活动辅导课程+免费领取历年真题&参考书